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Given an amalgam of groups
Gy
7
GO\
G,

then every quantum logic Qy=(L,, M,) (L, is a o-orthomodular poset, M, is
a full set of states on it) satisfying some reasonable conditions can be embedded
in a quantum logic Q={(L, M), in which (1) all the automorphisms of L form
a group =G, (2) all the automorphisms of M form a group =G,, and (3) all
the symmetries of @ form a group == G,. The quantum logic of all closed subspaces
of a Hilbert space H and all its measures satisfies the conditions required from
Q,; hence, enlarging it, one can obtain “anything.”

1. INTRODUCTION AND THE MAIN THEOREM

Every abstract group can be represented as the group of all automorph-
isms of an orthomodular lattice. This result of Kalmbach (1984) was enriched
by the investigation of states in Kallus and Trnkova (1987), where collections
of quantum logics with some prescribed properties (representing prescribed
groups by their symmetries and a prescribed order on the index set by the
embeddability) were constructed.

Here, 1 investigate symmetries of quantum logics, automorphisms of
the corresponding o-orthomodular posets and the bijections of the set of
states, preserving all the o-convex combinations. I show that their connec-
tions are rather free in general; then can represent any amalgam of groups.

First, recall the appropriate names and notions. A quantum logic is a
pair Q= (L, M), where L is a o-orthomodular poset [i.e., a partial order <
on L and a complementation ": L— L are given such that L has the smallest
element 0, the largest element 1, 0# 1, and (p'Y =p,pvp'=1,pap =0 for
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allpeL,p=qiftp'=q’, p=<gqimplies g =p v (g A p’), moreover,if p;, p,, . . .
is a sequence of pairwise orthogonal elements, i.e., p; < p; for i # j, then the
join \/:O:1 p, exists in L] and M is a o-convex full set of states on L [i.e.,
each me M is a map of L into (0, 1) such that m(0) =0, m(p’) =1—m(p),
and m(V°_, p,)=Y"_, m(p,) whenever p,, p,, . . . is a sequence of pairwise
orthogonal elements; moreover, M is closed under the forming of o-convex
combinations, i.e., for any sequence {a,} of real numbers and {m,} of states,
a,=0 and Y a,=1 = Y am,eM
n=1 n=1
and M is full in the sense that it determines the order of L, i.c., for every
pqgeL,
VmeM  m(p)=m(q) = p=q]

A sublogic Qo(Ly, M,) of a quantum logic Q =(L, M) is determined by a
one-to-one strong homomorphism h: Ly L [i.e., x<y in Ly iff h(x)=<h(y)
in L, h preserves 0, complements, and the joins of pairwise orthogonal
sequences] such that

{moh|me M}=M,

(i.e., L is an enlarging of L, and each state in M, is extended to L, not
necessarily in a unique way; the set of these extensions is the state set M);
clearly, the map
h: M- M,

given by h(m)=m o h which is required to be surjective by our definition,
preserves the o-convex combinations. We say that Q, can be embedded in
Q if it is its sublogic in the above sense.

A symmetry of a quantum logic Q = (L, M) (Pulmannova, 1977) is any
automorphism 7: L L for which

{mor|meM}=M

Clearly, all the symmetries of Q form a group; let us denote it by Aut Q.
It is a subgroup of the group Aut L of all the automorphisms of L. The
third group investigated here, associated with the quantum logic Q =(L, M),
is the group of all the bijections

b: M->M
which preserve the o-convex combinations, i.e.,

b(§ anmn)= S a,b(m,)

=1

O
whenever m,eM, «a,=0, Y a,=1
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Let us denote the last group by Aut M.

The preservation of the o-convex combinations is equivalent to the
preservation of the convex combinations, so that the elements of Aut M
are the stochastic symmetries in the sense of Cook and Riittimann (1985).
These three groups form an amalgam in a natural way, namely

Aut L
Aut Q
Aut M

where i is the inclusion map and the one-to-one homomorphism « is given
by the formula

[K(T)](m)=mo7! forall meM

Are there any other general relations among these groups? I prove here
that the answer to this question is negative: any amalgam of groups

Gy
V
N

G,

(i.e., Gy, G,, and G, are arbitrary abstract groups, h, and h, are one-to-one
homomorphlsms) can be realized by a quantum Ioglc Q=(L, M), in the
sense that there exist isomorphisms

@, of G; onto Aut Q
&, of G, onto Aut L
@, of G, onto Aut M

such that ic ®,=®, h, and « - ®,;=P, < h,. This is the first statement of
our main theorem. Moreover, a quantum logic realizing a given amalgam
& can be constructed such that it contains a given quantum logic Q,=
(Lo, M,) (satisfying some conditions) as its sublogic—this shows that in
fact a given amalgam can be realized in many distinct ways; or, on the
other hand, that the quantum logic Q,= (L,, M) can be enlarged such that
one obtains a previously prescribed amalgam.

Before the formulation of the Main Theorem, recall that a o-
orthomodular poset L, is called atomist if each I€ L, is a join of the set of
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all atoms ae L, with a=<1;, and a state me M, is called pure if m=
am;+(1—a)m, with 0<a <1 implies m; = m,=m.

Main Theorem. Let Q,= (M, Ly) be a quantum logic such that L, is
atomistic and M, satisfies the following conditions:

(a) Every state in M, is a o-convex combination of pure states.

(B) For every ordered pair a, b of distinct atoms of L, there exists a
state m € M, with m(a)=1> m(b).

(y) There exists a collection {s, |a € A} of pure states of M,, where A
is the set of all atoms of L,, such that (i) (Vae A)(s,(a)=0); (i)
S.(b)+s,(s)<2 for every a,be A, a# b.

Then every amalgam of groups can be realized by a quantum logic Q=
(L, M), containing Q, as a sublogic. Moreover, L is also atomistic and if
L, is a lattice or o-complete lattice or a complete lattice, so is L.

Remark. The quantum logic Qy=(Ly, M,) of all closed subspaces of
a separable complex Hilbert space H with dim =3 and all the o-additive
probabilities satisfies the requirements of the Main Theorem. It is well
known that L, is atomistic and (a), (8) follow immediately from Gleason’s
theorem. However, the condition () also follows from Gleason’s theorem:
it suffices only to find a map A: A= A without 2-cycles such that ¢ and
A(a) are always orthogonal [since dim H =3, for every a € A theset O(a) <
A of all atoms orthogonal to a is large enough: card O(a) =2%°; this makes
it possible to construct such A by the transfinite induction] and put s, = ¢, (4),
where g, is the pure state associated to the atom b. This is presented in
Trnkova (1988), where also the Main Theorem was announced. The proof
of the Main Theorem appears for first time here. It is rather involved and
it uses some graph-theoretic techniques. The most involved part of the proof
is the construction of an embedding of the given quantum logic Q, into a
rigid one.

2. QUANTUM LOGICS DETERMINED BY GRAPHS

1. Let us denote by & the class of all undirected graphs (V, E) (i.e.,
V is the set of its vertices, not necessarily finite, E is the set of its edges,
i.e., each ec E is a two-element subset of V) which are:

Without triangles (i.e., if x, y, z € V, then at least one of the edges {x, y},
{y, z}, {z, x} is not in E).

Without squares (i.e., if x,y,z, ve V, then at least one of the edges
{x, v}, {y, z}, {z, v}, {v, x} is not in E).

Of degx=2 for all xe V (i.e., there exist distinct y, ze V with {x, y},
{x,z}e E).

Of card V= 5 and for each x € V there exists y € V\{x} with {x, y} ¢ E.
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As is well known (see. e.g., Kalmbach, 1983), every G =(V, E) deter-
mines an orthomodular lattice L(G) as follows: each edge e ={x, y}€ E is
cut into two edges and the obtained undirected graph is the Greechie
diagram (Kalmbach, 1983) of L(G). Informally, each edge e ={x, y}€ E is
replaced by a copy of these Boolean algebra 2* with three atoms x, y, x' A y';
in all these Boolean algebras 0 and 1 are identified and, moreover, if two
edges ¢, éc E have a vertex x in common, say e ={x, y}, é={x, j}, the
corresponding Boolean algebras have the atom x and the coatom x’ in
common. Since G = (V, E) has no triangles and no squares, L(G) is really
an orthomodular lattice (Kalmbach, 1983). All the Boolean blocks
[=maximal Boolean algebras; see Kalmbach (1983)] of L(G) are isomor-
phic to 2°. In the convention that x, y, x’ A y’ are atoms of the Boolean block
corresponding to e ={x, y}, we may suppose that

Ve L(G).
Let us call each x € V a vertex of L(G) and each x’ a covertex of L(G).

2. We say that a Boolean block B of a o-orthomodular poset L is clear
(Kallus and Trnkova, 1987) if there exists an atom a € B such that there
exists precisely two distinct elements of L\{1},say a;, a, witha<a,, a <a,;
then the atom a with this property is called clear, too.

If G=(V, E)e®, then each Boolean block of L(G) is clear, the clear
atom of the block corresponding to {x, y} € E is x' A }’, the covertices x’, y’
are the only elements of L{G)\{1} dominating it. Since deg x =2 for each
x€ V, no x is a clear atom [in fact, if {x, y} and {x, j} are distinct edges
having the vertex x in common, then x v y, x v j, y', " are distinct elements
of L(G) dominating x].

Every automorphism y of G determines uniquely the automorphism
L(y) of L(G) extending it, i.e.,

[L(y)]1(x)=y(x) forall xeV

because then, necessarily, [L(y)](x") = (y(x)), [L(y)](x v y) = y(x) v y(y),
and [L(y)1(x'Ay") = (y(x)) a(y(y)) forall {x, y} e E and 0 and 1 are fixed
points of L(v).

Conversely, if 7 is an automorphism of L(G), then, necessarily, 7=
L(v) for some automorphism y of G. In fact, 7 sends the set of all clear
atoms onto itself and the set of all the remaining atoms also onto itself.
This implies that the domain-range restriction of = maps bijectively V onto
itself and, since T maps each Boolean block onto a Boolean block, this
restriction is an automorphism of G. We conclude that the groups Aut G
and Aut L(G) are isomorphic, the isomorphism is given by

y~ L(y)
and the inverse isomorphism is the domain-range restriction only.
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3. Let G=(V, E) be in &, let m: L(G)-(0, 1) be a state, i.c.,

m(0) =0, m(1)=1

m(x)=1-m(x) foreach xeV (1)
m(xvy)=m(x)+m(y), mx'ay)=1-[m(x)+m(y)]

for each {x, y}e E

Thus, the state m is determined by its values m(x) with x € V, the values
at 0,1 x', xvy, x' Ay’ are given by equations (1). Clearly,
amap m: V-(0,1) determine a state on L(G) 2)
iff m(x)+m(y)=1forall {x, y}e E

Let I be an independent set of the graph G=(V,E)e® (i.e., IV and
never {x, y}e E for x, y € I). Then the state m, is defined by

my(x)=1 if xel
m;(x)=0 if xe V\I

(i.e., its restriction to V is the characteristic function x; of I in V). Since
x; satisfies (2), m, is really a state.

Observation. For each independent set I of G, m; is a pure state on
L(G). (In fact, every two-valued state is a pure state.)

4. Let & and G=(V, E)e®, L(G) be as in Sections 2.1-2.3. Let $
be the set of all independent sets of G and, for each I ¢ ¢, let m; be the
state as in Section 2.3. We say that < ¢ is a full system of independent
sets of G if

@ged, {x}eJ forall xeV,and
for every x, ye V with {x, y} & E there exists [e¢ T 3)
such that {x, y}<= I

Lemma. Let T < ¥ be a full system of independent sets of G. Then
P,={m;|Ie J} is a full set of states on L(G).

Proof. If a, be L{G), then
azb = (AIc T)(m;(a)=1>0=m(b))

This can be proved by a staightforward verification discussing all the possible
cases. We show, e.g., the example when a is a vertex and b=x"ay’ for
vertices x, y with {x, y}e E: if ae{x, Y}, then m,,(a)=1> 0= m,(b); if
aé{x, y}, then (since G does not contain triangles) either {a, x}¢ E or



Automorphisms and Symmetries of Quantum Logics 1201

{a, y}# E, then there exists I € J such that either {a,x} = I or {a,y} <= I,
hence m,(a)=1>0=m;(b). |

5. Let G=(V, E)e®, and let ¢ be the set of all independent sets of
G. We say that J < ¢ is invariant if for every ye Aut G, the system
yT ={y(I)|I € T} is equal to J.

Let y € Aut G; denote 7= L(y)€ Aut L(G). Clearly,

myy=myor !
Hence, if J < # is invariant, then
{m|IeTy={myor7 |1 T}
for every ye Aut G, 7= L(y) € Aut L(G).

6. Let G=(V,E)e®, put 7(G)={Dtu {{x}xe VIu{{x,y}x,yeV,
{x, y}# E}. Clearly, 7(G) is an invariant full system of independent subsets
of G. Put

P(G)={m|Ie T(G)}
and denote by M(G) the o-convex envelope of P(G). Then
Q(G)=(L(G), M(G))

is a quantum logic; P(G) is precisely the set of all pure states of Q(G).
Moreover, for every 7€ Aut L(G),

{mer'me M(G)} = M(G)

so that each 7€ Aut(L(G)) is already a symmetry of the quantum logic
Q(G). Hence, we see that, in the amalgam,

Aut{L(G))
Aut Q(G)

Aut M(G)
The inclusion i is the identity. Now, we show that « is also surjective.

7. Proposition. Let G=(V, E) be in &, and let bc Aut M(G). Then
there exists 7€ Aut L(G) such that

b(m)=mo+"! for all me M(G)

Proof. 1 present here an elementary proof, which is instructive also for
the proofs in the next parts.
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(i) Since P(G) is the set of all pure states of M(G), b maps P(G)
onto itself. Hence, there is a bijection B of J(G) onto itself such that, for
all Ie 9(G),

b(m;)=mg,
To prove the Proposition, it suffices to show that
Bp=0
B{x} is a one-point set, say {x} (4)
Bix, y}={%, 7}
In fact, then B determines a bijection y of V onto itself by the rule
y(x)=x%

Moreover, if {x, y} 2 E, then {y(x), v(»)} £ E. Onthe other hand, if {X, y} £ E,
then there is e 7(G) with BI ={X%, y} because B is surjective. Then (4)
implies that I has precisely two elements and I £ E, so that

(X, 7}2E = {y'(x), v '} E

Thus, vy is an automorphism of G. Clearly, 7= L(y) satisfies b(m,) = my, =
m; o7~ for all I € 7(G). Since b preserves the o-convex combinations, we
have

b(m)=mo 7! forall me M(G)

(ii) Thus, it suffices to prove (4). First, we show that B¢ = (. Let us
suppose the contrary; let ze B¢. Forany x,ye V, x#y, {x, y} 2 E, we have

1 1 1 1
IMpyy F My =My, T3y (5)
so that, since b preserves this convex combination,
1 1 1 1
3Mp(xy T aMp(y) =2Mpix )+ 1MBy (6)

Since myg,(z) =1, necessarily z € B{x} or z € B{y}. Hence, if x, y are distinct
vertices of G such that z ¢ B{x} and z £ B{y}, necessarily {x, y} < E. Since
G =(V, E) contains no triangle, necessarily z € B(x;) for some x; from each
triple x;, x,, x5 of distinct vertices of G. Since card V =35, there are at least
three distinct vertices y;, v,, ¥; such that ze B{y;} for all i=1, 2, 3. Since
G contains no triangle, there exist such x, ye{y;, y», ys} that {x, y}2 E.
Hence, we have constructed a couple x, y of distinct vertices of G such that

ze B{y}, ze B{y} and {x,y}2 E

Then equation (6) implies that z € B{x, y}. Since B is a bijection, B{x},
B{y}, and B¢ are four distinct elements of J(G) and equation (6) implies
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B{x}u B{y}= B{x, y} U Bo. The elements of J(G) are subsets of V with
at most two elements and the couple x, y was constructed such that the
vertex z, which was supposed to be in B¢, is also in B{x}, B{y}, B{x, y}.
Hence B{x}, B{y}, B{x, ¥}, and B¢ cannot be distinct, which is a contradic-
tion. Consequently, B¢ = .

(iii) Now, we finish the proof of (4). Equation (6) and B¢ = imply
that for every pair x, y of distinct vertices X, y with {x, y}2 E we have
B{x}u B{y} = B{x, y}. Since B is a one-to-one map, B{x}, B{y}, and B{x, y}
are three distinct elements of J(G), so that necessarily B{x} ={x}, B{y} =
¥}, and B{x, y} ={x, y} for some distinct X, y € V with {X, y} £ E. Since, for
every x € V, there exists distinct y € V with {x, y} £ E (see the definition of
& in Section 2.1), the vertex X is determined for each xe V. O

3. QUANTUM LOGICS REALIZING A GIVEN AMALGAM

1. Let an amalgam of groups

be given. Since we work with it up to isomorphism, we may suppose (see,
e.g., Kurosh, 1957) that the amalgam is formed by subgroups of a group
G, and h, and h, are inclusions, say

GIEG, ngG, G0=G1mGz

We are going to realize & by a quantum logic in the sense of Section 1.
The quantum logic Q will be consructed based on the following data:

three undirected graphs H =(W, E), H,=(W, E,), H,=(W, E,) on
the same set of vertices W, all of them in &, and aset Jc W

such that all the following statements are satisfied:

(a) ECE,CE,.

(b) Aut H,CAut H fori=1, 2.

(c) There is an isomorphism ¥ of G onto Aut H, which sends G; onto
Aut H; for both i=1, 2.

(d) J is an independent set of H,, card J=5 and
() {x,y}e E\AE, = {x,y}cJ
(ii) yeAut HnAut H, = y(J)=J

(e) No H, H,, H, contains a 7-cycle.
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All the graphs H, H,, H, have the same set of vertices W, hence Aut H,
Aut H,, Aut H, all are subgroups of the group of all permutations of W,
so that (b) is meaningful. Since, by (¢), ¥ sends G; onto Aut H; for both
i=1,2, it sends Gy= G, G, onto Aut H,n Aut H,.

The graphs H, H,, H, and J = W which satisfy all these requirements
(a)-(e) are constructed in the Appendix. The property (e) is not used in
this section, but it will be used in Section 4.

2. For each of the graphs H, H,, H, we have the o-orthomodular
lattices L(H), L(H,), L(H,). They have the same set of vertices and
covertices Section 2.1); they differ only in the forming of xv y and x" A y'.
Since E< E,CE,, we have

L(H)< L(H\) C L(H>)

Every automorphism of each of them is of the form L(y), where y is an
automorphism of the corresponding graph; see Section 2.2. By (b) and (c),
there exists an isomorphism @ of G onto Aut L(H) which sends G, precisely
on the group of the automorphisms of L{H) extendable on L(H,), i=1, 2
(the such an extension is unique because H and H; have the same set of
vertices!). Notice that 7€ Aut L(H) extendable to L(H,) can be unextend-
able to L(H,) because the restrictions of elements of Aut L(H,) need not
be automorphisms of L(H;). On the other hand, the restriction of any
T€Aut L(H,) to L(H) is in Aut L(H). This follows from assumption (b):

Aut H s Aut H
Hence
{re Aut L(H) | is extendable both to L(H,) and to L(H,)}
={re Aut L(H,)|r is extendable to L(H,)}
Hence the isomorphism @ of G onto Aut L{ H) determines three isomorph-

isms @y, ®,, and ®, such that the following diagram commutes:

[s3]
G, ——— Aut L(H))

Gy——— {re Aut L(H,)|7 is extendable to L(H,)} (7)
i e

G, ——2 > Aut L(H,)

In (7), i), i,, and e, are the inclusions, and e,(7) is the unique extension
of 7. Moreover, if 7€ Aut L(H,) is extendable to L(H,), its restriction to
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L(H) is of the form L(y), where y € Aut H; n Aut H,, so that
m(J)=J (8)
by (d).

3. Since L(H,)< L(H,) and L(H,) and L(H,) have the same set of
vertices, the restriction of any state m: L(J,)—»(0, 1) to L(H,) is a state on
L(H,) (se Section 2.3). Denote by P™ the set of all the restrictions "/ L(H,),
where m € P(H,). Then we have isomorphisms

Aut L(H,) —=> Aut M(H,) —/— AutM" (9)

where M ™ is a o-convex envelope of P*, k is the canonical isomorphism
given by the formula [k (7)](m)=mo 77", and r(r) sends each "/ L(H,) to
M)/ L(H,). Hence, Aut L(H,), ®,, and e, can be replaced by Aut M™,
rexe®,, and re ko e, in the diagram (7). On the other hand, M~ is not
a full set of states on L(H,) in general. [In fact, if {x, y} e E,\E,, then x
and y’ are incomparable in L(H,), while x = y"in L(H,), hence m(x)> m(y")
for no me M*.] But

J={s}u{{x}|xe Whu{{x, y}|x,ye W, x#y, {x, y}¢ E;} U {J}
is a full system of independent sets of H, (see Section 2.3), by (d), so that
P*U[my;=m;|IeJ]is a full set of states on L(H,) (see Section 2.4). Let

us denote by M the o-convex envelope of P"u{m,}, i.e., of MU {m,}.
Then

Q=(L(H)), M)

is a quantum logic which realizes the given amalgam. This follows immedi-
ately from (7), (9), and Lemmas A and B below [Lemma A implies Aut M ™ =
Aut M, Lemma B implies that Aut Q={re€ Aut L(H,)|7 is extendable to
L(H)}].

4. Lemma A. For every be Aut M, b(m,;)=m; and b sends P* onto
itself.

Proof. Since P= P"w{m,} is the set of all pure states of M, b sends
it onto itself. For each m € P™ there exist states m,, m,, m; in P such that
all the states m, m,, m,, m; are distinct and

sm+3m, =3m,+3ms
[see equation (5) in Section 2.7]. Since card J =5, m, is the unique state
in P which fails to satisfy it. Consequently b(m;)=m;,. R
Lemma B. For every 7€ Aut L(H,) extendable to L(H,),

myor '=m,
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Proof. This follows from (8). H

4. EMBEDDINGS INTO RIGID QUANTUM LOGICS AND
THE PROOF OF THE MAIN THEOREM

1. Let us say that a quantum logic Q = (L, M) is rigid, Aut L= {1} and
Aut M ={1} (hence Aut Q={1}), where {1} denotes the trivial group. Let
us suppose that a given quantum logic Q, = (Lo, M,) satisfies the assumption
of the Main Theorem, i.e., L is atomistic and (a), (8), and (y) are satisfied.
In this section we show that Q, can be embedded in a rigid quantum logic.
We can suppose that L, contains no blocks isomorphic to 2* and no clear
block (see Section 2.1) isomorphic to 2°. This follows easily from the
following lemma.

Lemma. Let Qo( Ly, M,) satisfy the requirements of the Main Theorem.
Then it can be embedded into a quantum logic Q, =(L,, M,) such that Q,
also satisfies the requirements of the Main Theorem and L, does not contain
2%-blocks and clear 2°-blocks.

Proof. The statement (y) avoids 2*-blocks. If B is a clear 2>-block with
atoms x, y, and z, and z < v only for v=x', y', or 1, we add two new atoms,
say w and ¢, and split z as z=w v t (hence, we add also coatoms w' and
t'and z’=wat, xvi=y aw',...), so that B is enlarged to a 2*-block.
Every state m e M, is extended in two states m,, and m, by

m,(w)=m(z)=m(t), m,(1)=0=m(w)

Let us denote by M, the o-convex envelope of {m,,, m,|m e M,}. Then the
restriction on L, of all states in M, is precisely M, and a state pe M, is a
pure state in M, iff p = m,, or p = m, for a pure state m in M,. Clearly, («)
and (B) from the Main Theorem are fulfilled for M,. We show that also
(7y) is fulfilled. The new set of atoms A is equal to (A\{z})uw{w, t}. For
ae A\{z}, put t,=(s.), and put §,=(s,),=5,), =S5 [since s5,(z)=0,
s,(w) =s5,(t) =0]. Then {§,|a € A} satisfies ().

Repeating this procedure for all clear 2°-blocks in L,, we obtain
(L,,M;). 1

2. By the lemma, we suppose that the given quantum logic Q,=
(Lo, M,) satisfies the requirements of the Main Theorem and L, contains
no 2°-blocks and no clear 2°-blocks. Let us recall that A denotes the set of
all atoms of Ly, P the set of all pure states of M, and {s,|a € A} is as in
(). We are going to construct a rigid quantum logic Q = (L, M) containing
Q,. We construct L analogously as in Kallus and Trnkova (1987): we find
a suitable sufficiently large graph G=(V, E) in & (see Section 2.1) (for the
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present construction, G has to be chosen in a rather special way; this will
be described below) and a one-to-one map ¢ of A into V such that
c(A)={c(a)|ae A}is an independent set of G. Then L is a o-orthomodular
poset obtained from Lyu L{G) by identifying 0 in L, with 0 in L(G), 1 in
L, with 1 in L(G), and putting

a<(c(a)) forall acA

[1.e., we add the elements a v ¢(a) and a’ A {c(a)) as in Kallus and Trnkova
(1987). Informally, in the horizontal sum L,U L(G), we join each a with
c(a) by a 2°-block.] Clearly, if L, is a lattice or a o-complete or complete
lattice, so is L.

Let us suppose that Aut G=Aut L(G) is trivial. We prove that also
Aut L is trivial, as in Kallus and Trnkova (1987). In fact, L, contains no
clear 2°-blocks, while every vertex of G is an atom of L, which is contained
only in clear 2’-blocks and there are at least two distinct clear blocks
containing it. This property characterizes all the elements of L which are
vertices of L(G). Since any automorphism 7: L-> L has to preserve this
property, it maps the set of all vertices of L(G) onto itself, hence it maps
L(G) onto itself and its domain-range restriction to L(G) is of the form
L(v), where v Aut G (see Section 2.2). Since Aut G ={1}, 7 is the identity
on L(G). In particular, 7(c(a)) = c¢(a), so that 7(a) = a for all a € A. Since
L, is atomistic, 7 is the identity map, i.e., Aut L={1}.

3. To define the set M of states of a quantum logic Q with the required
properties is more delicate. For every pure state pe P on L, we find a
connected graph G, =(V,, E,) in & such that:

(a) card V,>5+card Px A,

(b) G, contains an independent set I, with card I,> card A.

(¢) {G, 1 pe P} is a stiff collection of graphs (in the sense that if p,,
p-€ P and there is an isomorphism y of G, into G,,, then
necessarily p; = p, and v is the identity).

(d) Every vertex of each G, lies on a 7-cycle (this assumption is not
used for the embedding of a given quantum logic into a rigid one,
but for putting together the constructions of Section 3 and 4).

Concerning the existence of such a collection of graphs, see the Appendix.
We may suppose that V, NV, = whenever p, # p,. We put

v=UV,, E=U E,

peP peP

and use the graph G =(V, E) in the construction described in Section 2.
We have also to specify how c(a) are chosen in V. Let us recall that
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{s.|a € A} is the collection of pure states on L,, which satisfies the require-
ment (y) of the Main Theorem. We choose

x,=c(a) in V,_such that if a, be A, a # b, then {x,, x,} £ E

[If s, # s,, then this is satisfied automatically because no vertex of V,, is
joined with any vertex of V; if s, =s,, then it is possible by (b).]

Since {G,|p e P} is a stiff collection of connected graphs, G is a rigid
graph, so that Aut G = Aut L= {1}, as shown in the previous section.

4. 1 describe how pure states on L, are extended on L. For each pe P
put

R, ={Stullx}|xe V,}u{{x yHx ye V,, x #y, {x, y} 2 E,}
and denote by
M,={p,|reR;}
the set of extensions of p defined as follows:
p. restricted to Ly is p
D, restricted to V, is the characteristic function of r
[ie, p(z)=11if zer; p,(z)=0 for all ze V,\r] (10)
p(z) =% for all ze V\(V,u{x,|ac A})
pr(x,)=1-max(3,3[1+p(a)]) whenever ac A and p # s,
Lemma. For every me M, we have
m(D=p(l) forall lelL,
m(x)+m{y)=1 whenever {x,y}ec E
m(x;,)=p(a) forall acA
'so that each m € M, is really a state on L.

Proof. The first two statements are evident; let us show the last one.
Let m=p, with re R,. If pe P\{s,}, then p.(x,)=max(3,3[1+p(a)])=
p(a)=p.(a). If p=a,, then p,(x,)=s,(a) because s,(a)=0 by (y) in the
Main Theorem. W

Lemma. If p, g€ P, p # g, then
forall zeV,andall reR,

;]_1
(11)
i for at least 5 elements z of V,
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Proof. The first statement follows immediately from (10); the second
follows from (10) and the fact that card V, > 5+card A [see (a) in Section
3.3], so that card(V,\{x,|ae A})>5. R

5. Put M=,cp M,.
Lemma. M is a full set of states on L.

Proof. One has to show that if [,, l,e L and [, 2 [,, then there exists
m e M such that m(l,) > m(l,). The verification of this fact is quite easy in
all the possible cases. However, many cases have to be discussed. I omit
this long and tedious discussion and show the statement only in “the worst
case” when [, =a’'ax), and L, =b v x;, for some a, be A, a # b. We need (v)
of the Main Theorem: either s,(b) <1 or s,(a) <1. If s,(b) <1, we choose
m={(s,), with r=¢. The m(l,))=1—[m(a)+m(x,)]=1—[s,(a)+0]=1,
while

m(L) = m(b)+m(x,) = s,(b)+1~max(3, 1+ s.(b)]) <1
If s,(a)<1, we choose m = (s,), with r=¢. Then
m(L)=1—{sy(a)+1-max(,3[1+s,(a)]}
=max(3, [ 1+s,(a)]) = sp(a) >0
while m(L)=s,(b)+0=0. W

6. The set A;I=U,,Ep M, is a full set of states on L. Let M be its
o-convex envelope. Since M, is a o-convex envelope of P, by («) of the
Main Theorem, the restriction on L, of any me M belongs to M,. Thus,

Q=(L, M) is a quantum logic containing Qy(L,, M,) as a sublogic
Lemma. M is precisely the set of all pure states of Q.

Proof. Let some m=p,, peP, recR, be expressed as m=
am;+(1—a)m, for some 0 < a <1 and m,, m, € M. Since p, is an extension
of a pure state p, necessarily the restrictions of m;, and of m, on L, are
equal to p, so that necessarily both m, and m, are o-convex combinations
of states from M,. Since p,(z)=1forall zer and p,(z)=0for all ze V,\r,
necessarily m; = m, = p,. Hence, every element of M is a pure state of M.
Since M is the set of all o-convex combinations of elements of M, no
element of M\M is a pure state of M. W

7. To prove that Q=(L, M) is rigid, we have to show Aut M ={1}.
Thus, let b be in Aut M; we are going to prove that b is the identity. Since
M is the set of all pure state of M, b maps M onto itself. For every pe P
and re R,, let us find p"e P and Fe R, such that

b(p)=(p"):
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in the notation of (10). Let us write py, px, Px, for p,, and pg, D%, pxy for
phif r=0, {x}, {x, y}. Forevery pe Pand every x,ye V,, x# y, {x, y} € E
we have

%px +%py = %px,y +%Po
This equation has to be preserved by b, so we obtain
%P;'*%Py 2Px;+2po (12)
8. Proposition. For every pe P, qS = (.

Proof. Let us suppose the contrary, i.e., there exists p€ P such that
é # &, choose ze dc V,.- This p and z will be fixed during the whole
proof, which is divided 1nto several lemmas.

Lemma. p*=p°=p”’=p* forall x,ye V,, x#y, {x, y} € E,.
Proof. Denote
m, =3p;+3p}, =35y +1p8

By (12), m,=m,, Since ze $, we have p(-,(z)=1, so that my(z)=3. If
px7ép°¢py, then my(z)=<1-14+1.1=1 by (11). Hence either p*=p° or

P’ —p Let us suppose that p* = p°. We prove that also p” = p°. If p” # p* =
p then m,(v)=1 -} for at least five elements v of V3, by (11) again. Since
the same has to be true also for m, and card({x, y} Ué) <4 necessarily p™
is also dlﬁerent _from p°=p~. Then, for ve Ve, ml(v) 3 iff ve{x} and
my(v)=iiffve d) Consequently, {X} = ¢, so that pX=pg. Thls isa contradlc-
tion, because p,ﬂépo and b is one-to-one. Thus, p* =p*=p°. If p™ # p°,
then m,(v) =3 for at least five elements v of V,, but m,(v) =0 except,
possibly, four elements of V, . This is a contradiction, hence p™’ is also
equal to p°. W

Lemma. There exist x, ye V,, x# y, {x, y} £ E, such that
ze{#}, zel{f}, ze{xy}
Proof. Since p*=p’ =p* =p° and G,=(V,, E,) is in ®, we can pro-
ceed as in the proof of Section 2.7. W
Now, we can finish easily the proof of the Proposition, as Section 2.7.
Since p’=p*=p’=p* and z is in all ¢, {X}, {F}, and {x, y}, the elements
in (12) cannot be all different, which is a contradiction.

9. As a consequence of Proposition 8, we obtain that, for all pe P, x,
eV,, x#y,{x,y}£E,, we have

b=0, =0, F#0, {y#0
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In fact, d; = (7 is just the statement of Proposition 8. The statements {X} # J,
{(7}# &, {x, y} # & follow also from Proposition 8, applied to b~' € Aut M.

Let p e P be given. Choose X € {x}. Since p%(¥) =1, necessarily [by (11)
and (12)], p* =p™’ and x € {x, y}. Analogously, choosing j € {y}, we obtain
that p” =p™” and je{x, y}. Since p* =p™ =p* but p;+# p}, necessarily
{ZX}#{7}; hence, we can choose X# 7, since card{x, y}=2, necessarily
{x, vy} ={%, 7}. Then (11) and (12) imply that p°=p™” [otherwise p§(v) =14
for at least five elements of V,«:, while 3p%+3p% would have the values on
V,~ equal to 0 except possibly four elements]. Hence p’=p =p’=p*
and, since ¢ = ¢, we have

{xp=1{x}, UL {xyt={xy

We conclude that every b € Aut M determines uniquely (1) a map of P into
P given by p ~ p° (=p” for all x€ V,), and (2) a map of each V, into V,,
given by x ~ %, such that, if x, ye V,, x # y, and {x, y} € E,, then {X, 7} £ E,,,
and

b(Po)ng, b(px):p?h b(py):pga b(px,y):pq,,\‘z

Since b7'e Aut M determines just the inverse maps, they all have to be
one-to-one and

X ~m X

is an isomorphism of G,(V,, E,) onto G,o=(V,9, E,0). Since {G, |pe P}is
a stiff collection of graphs, necessarily

p=p° forall peP and x ~ ¥ is the identity of G,
Thus, v: M - M is the identity. W

10. The proof of the Main Theorem is already quite simple. Let H,
H,, H, be graphs as Section 3.1; let {G,|p € P} be the collection of graphs
as in Section 4. Choose g € P and define

G!=(V,0W,E,UE)
G:=(V,0W,E,uE,)

(where we suppose V, n W= ¢ for all pe P). Choose all x, with s, =gq in
V, (never in W!). Define L by means of {G, |p € P\{q}} u{G,} as in Section
4.2. Since every vertex of each G, lies on a 7-cycle while H, does not contain
any 7-cycle, and 7€ Aut L maps V={,cp V, itself. Hence Aut L= Aut H,.
To define the set M of states, use the collection {G,|p e P\{q}} u{GZ.} and
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proceed as in Sections 4.2-4.5; restrict only all these states to L (as in
Section 4.3) and add the state g, defined such that

q; restricted to Ly is g

q, restricted to V, W is the characteristic function of J

g, is defined on V,, p# ¢, as in (10)

and form the o-convex envelope.
In the investigation of the state automorphisms b Aut M, first prove
that

b(q,)=gq,

(In fact, g, is the unique pure state of M, for which there do not exist pure
states m,, m,, m; such that all four states q;, m,;, m,, m; are distinct and

3q; +3my =3m,+3m;,
because card J =5.) Then, proceeding as in Sections 4.7-4.9, we prove that
every be Aut M defines maps
Ponto P, byp ~ p°
W, onto Wy, by x > X

where W, =V, if p# g, W, =V, U W. Since {G, |p e P} is a stiff collection,
every vertex of each G, lies on a 7-cycle, while H, contains no 7-cycle; we
conclude that

p=p° forall peP
X=X forall xeV,
X > X, x€ W, has to be an isomorphism of H, onto itself
This gives Aut M = Aut H,, Aut Q= Aut H,n Aut H,, as in Section 3.

Remark. As can be seen from the construction, Q= (L, M) is not
strongly full [in the sense that (m(;) =1 = m(l,)=1) = [, =1,] whenever
Qo =(Ly, M,) is strongly full. I do not know whether this strengthening of
the Main Theorem is valid.

APPENDIX: GRAPH CONSTRUCTIONS

I. Let subgroups G,, G, of a group G be given. I show how graphs
H=(W,E), H=(W,E,), H,=(W, E,), and J < W, which satisfy (a)-(e)
in Section 3.1 are constructed.
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By Trnkova (1986), there exists a directed graph (X, R) (i.e., R X X
X) and R;, R,< R, such that card R=35 and:

(a) (X, R) is a connected graph without loops [i.e., never (x, x) € R],
and there is an isomorphism ¢ of Aut(X, R) onto G.

(B) Allthe 7€ Aut(X, R) such that (x, y) € R; iff (7(x), (¥)) € R; form
a group, say Aut(X, R, R;), which is sent by ¢ onto G,.

We use the undirected graph K shown in Figure 1. The graph K consists
of two complete 8-cycles plus one 8-cycle lacking the edge {a, b}; and two
complete 6-cycles plus one 6-cycle lacking the edge {d, c}; the named vertices
x, y will play a special role. We obtain H = (W, E) from (X, R) such that
each arrow r = (x, y) € R is replaced by a copy K, of the graph K. In further
detail, in the disjoint union |U,.r K, we identify

x in K, with x in K; whenever o,(r) = m,(F)
x in K, with y in K; whenever m,(r) = m,(7)
y in K, with y in K; whenever ,(r) = m,(r) = m.(F)

where m;(a, b) =a, m,(a, b)=>b. We may suppose that X < W, X is just
the set of all “gluing points’ in the above ‘arrow construction.” In this sense,
every 7€ Aut(X, R) can be extended (uniquely) to 7€ Aut H: T sends the
whole copy K, “identically” onto the copy K;, where r=(x,y), =
(7(x), 7(y)). Conversely, every ¢é<Aut H is the extension of some t¢
Aut(X, R). [In fact, £ has to send z of each copy K, on the point z of K;
because z is the unique point which lies in an 8-cycle and has degree equal
to 4; then u is the unique point which lies on a 8-cycle and with degree
equal to 3, this implies that £ has to send the points u on the points u,
hence the whole 8-cycle of K, “identically” on its copy in some K ;; similar

%o
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reasoning show that £ must map the whole K, “identically” onto the copy
k;—hence the restriction of £€ Aut H to X is an element of Aut(X, R).]
Consequently, Aut H = Aut(X, R).

The graph H,(W, E,) is obtained from H =(W, E) such that we add
the edge {a, b} to all the copies K, with r€ R,. Then E < E,| and Aut H, =
Aut(X, R, R,) = G,. The graph H,= (W, E,) is obtained from H=(W, E)
such that we add the edge {qa, b} to all the copies K,, re R, and we add
also the edge {c, d} to all those copies K, with re R,. Then E,< E, and
Aut H,= Aut(X, R, R,) = G,. Finally, J consists of all ¢ and d of the copies
K, with re R, and of those vertices a and b which are in the copies K,
with re R\ R,; moreover, for J to be large enough, we add the vertices z
of all the copies K,. The graphs H, H,, H, contain no 7-cycle.

II. The collection {G, [p € P} with the properties (a)-(d) of Section 4.3
can be taken from Pultr and Trnkova (1980), where much stronger results
are presented. '
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